UOJ Logo Universal Online Judge

UOJ

#779. 【NOIP2022】建造军营

附件下载 统计

A 国与 B 国正在激烈交战中,A 国打算在自己的国土上建造一些军营。

A 国的国土由 n 座城市组成,m 条双向道路连接这些城市,使得任意两座城市均可通过道路直接或间接到达。A 国打算选择一座或多座城市(至少一座),并在这些城市上各建造一座军营。

众所周知,军营之间的联络是十分重要的。然而此时 A 国接到情报,B 国将会于不久后袭击 A 国的一条道路,但具体的袭击目标却无从得知。如果 B 国袭击成功,这条道路将被切断,可能会造成 A 国某两个军营无法互相到达,这是 A 国极力避免的。因此 A 国决定派兵看守若干条道路(可以是一条或多条,也可以一条也不看守),A 国有信心保证被派兵看守的道路能够抵御 B 国的袭击而不被切断。

A 国希望制定一个建造军营和看守道路的方案,使得 B 国袭击的无论是 A 国的哪条道路,都不会造成某两座军营无法互相到达。现在,请你帮 A 国计算一下可能的建造军营和看守道路的方案数共有多少。由于方案数可能会很多,你只需要输出其对 1,000,000,007(109+7) 取模的值即可。两个方案被认为是不同的,当且仅当存在至少一 座城市在一个方案中建造了军营而在另一个方案中没有,或者存在至少一条道路在一个 方案中被派兵看守而在另一个方案中没有。

输入格式

第一行包含两个正整数 n,m,分别表示城市的个数和双向道路的数量。

接下来 m 行,每行包含两个正整数 ui,vi,描述一条连接 uivi 的双向道路。保证没有重边和自环。

输出格式

输出一行包含一个整数,表示建造军营和看守道路的方案数对 109+7 取模的结果。

样例一

input

2 1
1 2

output

5

explanation

A 国有两座城市,一条道路连接他们。所有可能的方案如下:

  • 在城市 1 建军营, 不看守这条道路;
  • 在城市 1 建军营, 看守这条道路;
  • 在城市 2 建军营, 不看守这条道路;
  • 在城市 2 建军营, 看守这条道路;
  • 在城市 1,2 建军营, 看守这条道路。

样例二

input

4 4
1 2
2 3
3 1
1 4

output

184

样例三

见下发文件中的 ex_barrack3.inex_barrack3.ans

样例四

见下发文件中的 ex_barrack4.inex_barrack4.ans

子任务

对所有数据,保证 1n5×105n1m1061ui,vinuivi

各测试点的信息如下

测试点编号 n m 特殊条件
13 8 10
47 16 25
89 3000 5000
1011 5×105 106 特殊性质 A
1214 m=n1
1516 m=n
1720

特殊性质 A:保证 m=n1 且第 i 条道路连接城市 ii+1

时间限制:1s

空间限制:512MB