UOJ Logo Universal Online Judge

UOJ

#604. 【UER #9】赶路

附件下载 统计

作为文化课大师,skip 蚤每天早上要从家里去学校。

然而,在去学校的路途中,它还要去 早饭店、女朋友家、公交车站、小卖部 等地方,它做了一定的统计,列出了一张单子,这张单子包含了 n 个二维平面上的点,其中 1 号地点是家,n 号地点是学校。skip 蚤需要找到一个排列 p 来描述它每天上学走的路线,其中 pi 表示它经过的第 i 个地点,其中 p1=1,pn=n

对于一个排列 p,skip 蚤会从笔直的从点 pi 走到 pi+1。skip 蚤非常讨厌重复经过一个地方,所以它不能重复经过这个二维平面上的同一个点,即它的上学路线不能自交。

由于某些神秘的原因,不存在两个地点坐标相同,不存在三个地点都在某一条直线上。

输入格式

本题有多组测试数据,输入文件的第一行包含一个正整数 T,表示测试数据的组数。接下来包含恰好 T 组测试数据,每组测试数据具有以下的格式:

第一行一个正整数 n 表示地点数。

下面 n 行,每行两个整数 xi,yi,表示地点 i 在二维平面的坐标是 (xi,yi)

输出格式

输出包含 T 行,分别表示 T 组测试数据的答案。

对于每组数据,如果不存在合法路径,在该行输出 -1。否则,输出一行 n 个正整数,表示一个排列 p,其中 pi 是 skip 蚤第 i 个到达的地点的编号,如果有多种方案,请任意输出一种。

样例一

input

1
4
3 3
4 3
4 4
3 2

output

1 3 2 4

explanation

如图所示,容易发现这是一组合法的方案。

样例二

见附加文件中 ex_easy2.in,输出不下发但依然可以提交测试该样例。

样例三

见附加文件中 ex_easy3.in,输出不下发但依然可以提交测试该样例。

限制与约定

对于所有数据,保证 2n500,108xi,yi108,1T30

测试点编号 n 特殊性质
1 10
2
3 15
4
5 500 x1=y1=0 且四个象限均存在点
6 x1xixn
7
8
9
10

时间限制1s

空间限制512MB

下载

样例数据下载