一年一度的“跳石头”比赛又要开始了!
这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有 $N$ 块岩石(不含起点和终点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳向相邻的岩石,直至到达终点。
为了提高比赛难度,组委会计划移走一些岩石,使得选手们在比赛过程中的最短跳跃距离尽可能长。由于预算限制,组委会至多从起点和终点之间移走 $M$ 块岩石(不能移走起点和终点的岩石)。
输入格式
输入文件第一行包含三个整数 $L,N,M$,分别表示起点到终点的距离,起点和终点之间的岩石数,以及组委会至多移走的岩石数。保证 $L \geq 1$ 且 $N \geq M \geq 0$。
接下来 $N$ 行,每行一个整数,第 $i$ 行的整数 $D_i( 0 < D_i < L)$, 表示第 $i$ 块岩石与起点的距离。这些岩石按与起点距离从小到大的顺序给出,且不会有两个岩石出现在同一个位置。
输出格式
输出文件只包含一个整数,即最短跳跃距离的最大值。
样例一
input
25 5 2 2 11 14 17 21
output
4
explanation
将与起点距离为 $2$ 和 $14$ 的两个岩石移走后,最短的跳跃距离为 $4$(从与起点距离 $17$ 的岩石跳到距离 $21$ 的岩石,或者从距离 $21$ 的岩石跳到终点)。
限制与约定
测试点编号 | $n,m$的规模 | $L$的规模 |
---|---|---|
1 | $n,m \leq 10$ | $L \leq 10^9$ |
2 | ||
3 | $n,m \leq 100$ | |
4 | ||
5 | ||
6 | $n,m \leq 50000$ | |
7 | ||
8 | ||
9 | ||
10 |
时间限制:$1\texttt{s}$
空间限制:$128\texttt{MB}$