UOJ Logo Universal Online Judge

UOJ

附件下载 统计

活动快要结束了,活动的负责人伏特突然意识到他还没制作纪念品!

伏特找到了一件半成品,并决定将它加工完成。

半成品包含 n 个具有磁力小球和 n1 根具有磁力的棍子,并且第 i 根磁棍两端分别吸住了 fi[1,i] 号磁球和 i+1 号磁球。

磁球有黑白两色,1 号点是白色的,并且磁棍连接的两个小球不同色。可以证明,在这样的限制下,染色是唯一的。

伏特想要制作恰好 k 件纪念品,并且由于这些小球很珍贵,他不希望浪费小球。因此他将会拆除 k1 根磁棍,使得半成品分散为 k 块。

纪念品需要具有一定的特征,对于分散出的一个块,它可以作为纪念品当且仅当:所有只连接着一根磁棍的磁球同色。特别的,单个磁球也可以作为纪念品。

伏特找到了你,请你帮他选择一些磁棍拆除,或者告诉他这件半成品没法被拆成恰好 k 部分。

一句话题意:给定一棵树,你需要断掉 k1 条边,使得得到的每个连通块两两叶子距离均为偶数(连通块可以为单点)。

输入格式

本题多测。第一行一个整数 T,表示测试数据组数。

对于每组测试数据:

第一行两个整数 n,k,表示磁球个数和需要制作的纪念品个数。

第二行 n1 个整数,第 i 个整数 fi 表示第 i 根磁棍连接 fii+1

输出格式

如果不存在满足条件的方案,输出 -1,否则输出一行 k1 个整数,表示需要拆除磁棍的序号。

如有多种方案,输出任意一组均可。

样例一

input

1
6 2
1 1 3 4 1

output

2

explanation

样例解释

断掉 15 号磁棍同样是合法的方案。

样例二

input

1
3 2
1 1

output

-1

explanation

这是一条长度为 3 的链,显然无法被划分成符合条件的两部分。

样例三

见附件下载中的 ex_gift3.inex_gift3.ans

数据范围与提示

S 为所有测试数据的 n 之和。

子任务编号 n S 特殊性质 分值
1 15 200 10
2 2000 2000 30
3 2×105 2×105 除点 1 外所有点度数不超过 2 10
4 2×105 2×105 20
5 106 106 30

对于所有数据,保证 S106,n3,2kn,fi[1,i]

时间限制:3s

空间限制:1024MB